

Rudi Mathematici

Frank and Ernest

Copyright (c) 1999 by Thaves. Distributed from www.thecomics.com.
Frank and Ernest

© by Thaves. Distributed from wowthecomics.com.

Frank and Ernest
"HELLO, THIS IS A RECORDING... THAT IS, IT ISN'T A RECORDING RIGHT NOW WHILE I'M MAKING IT, OF COURSE, BUT IT WILL BE, OR RATHER IS, A RECORDING WHEN YOU hear IT ...OR, IN OTHER

© by Thaves. Distributed from whwthecomics.com

Rudi Mathematici

January

Putnam 2002, A1
Let k be a fixed positive integer. The n-th derivative of $1 /\left(x^{k}-1\right)$ has the form $\mathrm{P}_{n}(x) /\left(x^{k}-1\right)^{n+1}$ where $\mathrm{P}_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

A college football coach walked into the locker room before a big game, looked at his star quarterback, and said, "You're academically ineligible because you failed your math mid-term. But we really need you today. I talked to your math professor, and he said that if you can answer just one question correctly, then you can play today. So, pay attention. I really need you to concentrate on the question I'm about to ask you."
"Okay, coach," the player agreed. "I'll do my best."
"Good," said the coach. Then he asked, "Okay, now really focus. What is $2+2$?" All of his teammates watched quietly while the quarterback thought about the question.
The quarterback thought for a moment. Sheepishly, he answered, "Um, 4?"
"Really?" said the coach. "Did you really just say 4?"
To which his teammates shouted, "Oh, c'mon, coach! Give him another chance!"

1. How many eggs can you put in an empty basket?
2. They pay out the award as follows: 1 dollar the first week, $1 / 2$ dollar the second week, $1 / 3$ dollar the third week, and so on.

And as for Mixed Mathematics, I may only make this prediction, that there cannot fail to be more kinds of them, as nature grows further disclosed.

Francis Bacon
"When I use a word, "Humpty Dumpty said, in a rather scornful tone, "it means just what I choose it to mean neither more nor less."
"The question is," said Alice, "whether you can make words mean so many different things."
"The question is," said Humpty Dumpty, "which is to be master - that's all."

Charles Lutwidge Dodgson
An expert problem solver must be endowed with two incompatible qualities, a restless imagination and a patient pertinacity.

Howard W. Eves
Someone told me that each equation that I included in the book would halve the sales.

Stephen William Hawking
Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country.

David Hilbert
Amusement is one of the fields of applied mathematics.
William F. White

Rudi Mathematici

February

Putnam 2002, A2
Prove that among any $n+3$ points on an n-sphere, some $n+2$ of them lie on a closed hemisphere.

About a year ago, a small fire started in one of the hallways. An engineer, a scientist, and a statistician began debating the best way to extinguish the blaze.
"Dump some water on it!" the engineer suggested.
"No! Remove the oxygen!" said the scientist.
The statistician, however, started running around the building, starting fires in other locations. "What the heck are you doing?" the other two asked.
"Trying to create a decent sample size," he said.
2. How is the moon like a dollar?

1. Just one. Then it's no longer empty.

Each generation has its few great mathematicians, and mathematics would not even notice the absence of the others. They are useful as teachers, and their research harms no one, but it is of no importance at all. A mathematician is great or he is nothing.

Alfred W. Adler

Life is a school of probability.
Walter Bagehot
If "Number rules the universe" as Pythagoras asserted, Number is merely our delegate to the throne, for we rule Number.

Eric Temple Bell
Leibniz never married; he had considered it at the age of fifty; but the person he had in mind asked for time to reflect. This gave Leibniz time to reflect, too, and so he never married.

Bernard Le Bovier De Fontenelle
If men didn't know mathematics, they wouldn't rise a single palm from the ground.

Galileo Galilei

Pure mathematics is on the whole distinctly more useful than applied For what is useful above all is technique, and mathematical technique is taught mainly through pure mathematics.

Godfried Harold Hardy
Let us grant that the pursuit of mathematics is a divine madness of the human spirit, a refuge from the goading urgency of contingent happenings.

Alfred North Whitehead

	1	W	(1611) John Pell (1879) Robert Daniel Carmichael	
	2	T	(1836) Julius Weingarten	
	3	F	(1838) George William Hill (1845) Georg Cantor (1916) Paul Richard Halmos	RM062
	4	S	(1822) Jules Antoine Lissajous	
	5	S	(1512) Gerardus Mercator (1759) Benjamin Gompertz (1817) Angelo Genocchi (1885) Pauline Sperry (1915) Laurent Schwartz (1931) Vera Pless	RM194
10	6	M	(1866) Ettore Bortolotti	
	7	T	(1792) William Herschel (1824) Delfino Codazzi (1922) Olga Alexandrovna Ladyzhenskaya	RM146
	8	W	(1851) George Chrystal	
	9	T	(1818) Ferdinand Joachimsthal (1900) Howard Hathaway Aiken	
	10	F	(1864) William Fogg Osgood (1872) Mary Ann Elizabeth Stephansen	
	11	S	(1811) Urbain Jean Joseph Le Verrier (1853) Salvatore Pincherle (1870) Louis Bachelier	RM158
	12	S	(1685) George Berkeley (1824) Gustav Robert Kirchhoff (1859) Ernesto Cesaro	
11	13	M	(1861) Jules Joseph Drach (1957) Rudy D'Alembert	
	14	T	(1864) Jozef Kurschak (1879) Albert Einstein (1904) Lyudmila Vsevolodovna Keldysh	RM074
	15	W	(1860) Walter Frank Raphael Weldon (1868) Grace Chisolm Young	
	16	T	(1750) Caroline Herschel (1789) Georg Simon Ohm (1846) Magnus Gosta Mittag-Leffler	RM146
	17	F	(1876) Ernest Benjamin Esclangon (1897) Charles Fox	
	18	S	(1640) Philippe de La Hire (1690) Christian Goldbach (1796) Jacob Steiner (1870) Agnes Sime Baxter	RM122
	19	S	(1862) Adolf Kneser (1910) Jacob Wolfowitz	
12	20	M	(1840) Franz Mertens (1884) Philip Franck (1938) Sergi Petrovich Novikov	
	21	T	(1768) Jean Baptiste Joseph Fourier (1884) George David Birkhoff	
	22	W	(1394) Ulugh Beg (1891) Lorna Mary Swain (1917) Irving Kaplansky (1944) Margaret Hilary Ashworth Millington	RM206
	23	T	(1754) Georg Freiherr von Vega (1882) Emmy Amalie Noether (1897) John Lighton Synge	RM050
	24	F	(1809) Joseph Liouville (1948) Sun-Yung (Alice) Chang (1966) Gigliola Staffilani	RM142
	25	S	(1538) Christopher Clausius	
	26	S	(1848) Konstantin Andreev (1913) Paul Erdős	RM110
13	27	M	(1857) Karl Pearson	
	28	T	(1749) Pierre-Simon de Laplace (1928) Alexander Grothendieck	RM086
	29	W	(1825) Francesco Faà Di Bruno (1873) Tullio Levi-Civita (1896) Wilhelm Ackerman	RM170 RM098
	30	T	(1892) Stefan Banach (1921) Alfréd Rényi	RM134
	31	F	(1596) René Descartes	

Rudi Mathematici

March

Putnam 2002, A3
Let $n \geq 2$ be an integer and T_{n} be the number of nonempty subsets S of $\{1,2,3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that T_{n} $-n$ is always even.
(...continues from February) The fires were extinguished one by one, but when they finished, there was an unused bucket of water. The statistician said to the mathematician, "Can you please get rid of that water?" The mathematician proceeded to start another fire, and then he dumped the bucket of water on it.
"What'd you do that for?" the statistician asked.
"I reduced it to a previously solved problem," said the mathematician.
3. What coin doubles in value when half is taken away?
2. Both have four quarters.

The Hitch Hiker's Guide to the Galaxy offers this definition of the word "Infinite".
Infinite: Bigger than the biggest thing ever and then some. Much bigger than that in fact, really amazingly immense, a totally stunning size, "wow, that's big", time. Infinity is just so big that by comparison, bigness itself looks really titchy. Gigantic multiplied by colossal multiplied by staggeringly huge is the sort of concept we're trying to get across here.

Douglas Adams
I hope that posterity will judge me kindly, not only as to the things which I have explained, but also to those which I have intentionally omitted so as to leave to others the pleasure of discovery.

René Descartes
As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.

Albert Einstein
...the source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in essence the same as a small and concrete special case.

Paul Richard Halmos
Bridges would not be safer if only people who knew the proper definition of a real number were allowed to design them.
N. David Mermin

If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathematics to keep happy.

Alfréd Rényi

Rudi Mathematici

April

Putnam 2002, A4
In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3×3 matrix. Player 0 counters with a 0 in a vacant position, and play continues in turn until the 3×3 matrix is completed with five 1's and four 0's. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?

In a race between two electric cars, one developed by a United States company, the other developed by a British firm, the American car prevailed. A French newspaper ran the following headline:
In Race Between Electric Cars, British Car Loses, and American Car Finishes Next-to-Last.

4. If you can buy 8 eggs for 26 cents, how many can you buy for a penny and a quarter?
3. A half dollar. Remove 'half,' and it becomes a dollar.

Let us now reflect on what mathematics is: in itself, it is an abstract system, an invention of the human spirit which as such in its purity does not exist. It is always approximated, but as such is an intellectual system, a great, ingenious invention of the human spirit. The surprising thing is that this invention of our human intellect is truly the key to understanding nature, that nature is truly structured in a mathematical way, and that our mathematics, invented by our human mind, is truly the instrument for working with nature, to put it at our service, to use it through technology. It seems to me almost incredible that an invention of the human mind and the structure of the universe coincide. Mathematics, which we invented, really gives us access to the nature of the universe and makes it possible for us to use it.

Pope Benedict XVI
The total number of Dirichlet's publications is not large; jewels are not weighed in a grocery scale.

Johann Carl Friedrich Gauss
Mechanics is the paradise of the mathematical sciences because by means of it one comes to the fruits of mathematics.

Leonardo Da Vinci

Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.

Jules Henri Poincarè
You know we all became mathematicians for the same reason: we were lazy.

Max Rosenlicht
In the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used the third derivative to advance his case for re-election.

Hugo Rossi

18	1 M	(1825) Johann Jacob Balmer (1908) Morris Kline (1977) Maryam Mirzakhani	RM122 RM189
	2 T	(1860) D'Arcy Wentworth Thompson (1905) Kazimierz Zarankiewitz	RM138
	3 W	(1842) Otto Stolz (1860) Vito Volterra (1892) George Paget Thomson	RM136 RM161
	4 T	(1845) William Kingdon Clifford	
	5 F	(1833) Lazarus Emmanuel Fuchs (1883) Anna Johnson Pell Wheeler (1889) René Eugène Gateaux (1897) Francesco Giacomo Tricomi (1923) Cathleen Synge Morawetz	RM196
	$6 \quad S$	(1872) Willem de Sitter (1906) André Weil	RM088
	7 S	(1854) Giuseppe Veronese (1881) Ebenezer Cunningham (1896) Pavel Sergieievich Alexandrov (1926) Alexis Claude Clairaut	
19	$8 \quad \mathrm{M}$	(1859) Johan Ludwig William Valdemar Jensen (1905) Winifred Lydia Caunden Sargent	
	$9 \quad \mathbf{T}$	(1746) Gaspard Monge (1876) Gilbert Ames Bliss (1965) Karen Ellen Smith	RM208
	10 W	(1788) Augustin Jean Fresnel (1847) William Karl Joseph Killing (1904) Edward James Mcshane (1958) Piotr Rezierovich Silverbrahms	
	$11 \mathrm{~T}$	(1902) Edna Ernestine Kramer Lassar (1918) Richard Phillips Feynman	RM076
	12 F	(1820) Florence Nightingale (1845) Pierre René Jean Baptiste Henry Brocard (1902) Frank Yates	RM104
	$13 \mathrm{~S}$	(1750) Lorenzo Mascheroni (1899) Pelageia Yakovlevna Polubarinova Kochina	
	14 S	(1832) Rudolf Otto Sigismund Lipschitz (1863) John Charles Fields	RM100
20	15 M	(1939) Brian Hartley (1964) Sijue Wu	
	16 T	(1718) Maria Gaetana Agnesi (1821) Pafnuti Lvovi Chebyshev (1911) John (Jack) Todd	RM112 RM139
	17 W	(1940) Alan Kay	
	18 T	(1850) Oliver Heaviside (1892) Bertrand Arthur William Russell	RM160 RM052
	19 F	(1865) Flora Philip (1919) Georgii Dimitirievich Suvorov	
	20 S	(1861) Henry Seely White	
	21 S	(1471) Albrecht Dürer (1792) Gustave Gaspard de Coriolis	RM124
21	22 M	(1865) Alfred Cardew Dixon	
	23 T	(1914) Lipa Bers	RM148
	24 W	(1544) William Gilbert	
	25 T	(1838) Karl Mikailovich Peterson	
	26 F	(1667) Abraham de Moivre (1896) Yuri Dimitrievich Sokolov	
	27 S	(1862) John Edward Campbell	
	28 S	(1676) Jacopo Francesco Riccati (1710) Johann (II) Bernoulli	RM093
22	29 M	(1882) Harry Bateman	
	30 T	(1814) Eugene Charles Catalan	RM184
	31 W	(1926) John Kemeny	

Rudi Mathematici

May

Putnam 2002, A5
Define a sequence by $a_{0}=1$, together with the rules a a_{n+1} $=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set:
$\left\{a_{n-1} / a_{n}: n \geq 1\right\}$.
A physicist, an engineer, and a mathematician are using a public restroom.
The physicist finishes at the urinal, washes his hands very well using lots of soap and water, and says, "Physicists are very clean."
The engineer finishes, then washes his hands with a very small amount of soap and water. He says, "Engineers are able to make maximum use of scarce resources."
The mathematician finishes and walks out the door without washing his hands. On his way out, he says, "Mathematicians know enough to not piss on our hands."
5. What occurs once in a minute, twice in a week, but only once in a year?
4. Eight. A penny and a quarter is 26 cents.

I like your results. Let's make it a joint paper, and I'll write the next one.

Stefan Bergman
And since geometry is the right foundation of all painting, I have decided to teach its rudiments and principles to all youngsters eager for art.

Albrecht Dürer
The rules that describe nature seem to be mathematical. This is not the result of the fact that the observation is a judge, and it is not a necessary characteristic of science being mathematical. Simply it happens that mathematical laws can be formulated, at least in physics, which can make fantastic predictions. Why nature is mathematical is, once again, a mystery.

Richard Phillips Feynman
A good notation has a subtlety and suggestiveness which at times make it almost seem like a live teacher.

Bertrand Arthur William Russell

I learned in India a proverb that says: "Do not trust the calculations at least seven times, the mathematician not even a hundred times."

Malba Tahan
It is said that the history of mathematics should proceed in the same way as the musical analysis of a symphony. There are a number of themes. You can more or less see when a given theme occurs for the first time. Then it gets mixed up with the other themes, and the art of the composer consists in handling them all simultaneously. Sometimes the violin plays one theme, the flute plays another, then they exchange, and this goes on. The history of mathematics is just the same.

André Weil

		(1796) Sadi Leonard Nicolas Carnot (1851) Edward Bailey Elliott (1899) Edward Charles Titchmarsh	
		(1895) Tibor Radó	
		(1659) David Gregory	
		(1809) John Henry Pratt (1966) Svetlana Yakovlevna Jitomirskaya	RM197
23	5 M	(1814) Pierre Laurent Wantzel (1819) John Couch Adams (1883) John Maynard Keynes	RM065
	T	(1436) Johann Muller Regiomontanus (1857) Aleksandr Michailovitch Lyapunov (1906) Max Zorn	RM185 RM077
	$\begin{array}{ll}7 & \text { W } \\ 8 & \text { T }\end{array}$	(1863) Edward Burr Van Vleck	
		(1625) Giovanni Domenico Cassini (1858) Charlotte Angas Scott (1860) Alicia Boole Stott (1896) Eleanor Pairman (1923) Gloria Olive (1924) Samuel Karlin	RM209
	$\begin{array}{cc}9 & \mathrm{~F} \\ 10 & \mathrm{~S}\end{array}$	(1885) John Edensor Littlewood	RM049
		(940) Mohammad Abu'L Wafa Al-Buzjani (1887) Vladimir Ivanovich Smirnov	RM101
	S	(1881) Hilda Phoebe Hudson (1937) David Bryant Mumford	
24	12 M	(1888) Zygmunt Janyszewski (1937) Vladimir Igorevich Arnold	
	13 T	(1831) James Clerk Maxwell (1872) Jessie Chrystal Macmillan (1876) William Sealey Gosset (Student) (1928) John Forbes Nash	$\begin{aligned} & \hline \text { RM113 } \\ & \text { RM149 } \\ & \hline \end{aligned}$
	14 W	(1736) Charles Augustin de Coulomb (1856) Andrei Andreyevich Markov (1903) Alonzo Church	RM125
	15 T	(1640) Bernard Lamy (1894) Nikolai Gregorievich Chebotaryov	
		(1915) John Wilder Tukey	
		(1898) Maurits Cornelius Escher	RM097
		(1858) Andrew Russell Forsyth (1884) Charles Ernest Weatherburn (1884) Frieda Nugel (1913) Paul Teichmueller (1915) Alice Turner Schafer	RM148
251	$19 \text { M }$	(1623) Blaise Pascal (1902) Wallace John Eckert	RM053
	20 T	(1873) Alfred Loewy (1917) Helena Rasiowa	
	21 W	(1781) Simeon Denis Poisson (1828) Giuseppe Bruno (1870) Maria Skłodowska Curie	RM182
	22 T	(1822) Mario Pieri (1864) Hermann Minkowsky (1910) Konrad Zuse (1932) Mary Wynne Warner	
		(1912) Alan Mathison Turing	RM089
		(1880) Oswald Veblen	
		(1908) William Van Orman Quine	
26	26 M	(1824) William Thomson, Lord Kelvin (1918) Yudell Leo Luke	RM161
	$\begin{array}{lc} 27 & \mathrm{~T} \\ 28 & \mathrm{~W} \\ 29 & \mathrm{~T} \end{array}$	(1806) Augustus de Morgan	
		(1875) Henri Leon Lebesgue	RM173
		(1888) Aleksandr Aleksandrovich Friedmann (1979) Artur Avila Cordeiro de Melo	$\begin{aligned} & \hline \text { RM101 } \\ & \text { RM189 } \end{aligned}$
	30 F	(1791) Felix Savart (1958) Abigail A Thompson	

Rudi Mathematici

Putnam 2002, A6
Fix an integer $b \geq 2$. Let $f(1)=1, f(2)=2$, and for each $n \geq 3$, define $f(n)=n f(d)$, where d is the number of base- b digits of n. For which values of b does

$$
\sum_{n=1}^{\infty} \frac{1}{f(x)}
$$

converge?
Ten percent of all car thieves are left-handed.
All polar bears are left-handed.
If your car is stolen, there's a 10% chance it was taken by a polar bear.

Thirty-nine percent of unemployed men wear glasses.
Eighty percent of employed men wear spectacles.
Therefore, work causes bad vision.
Every second, 4,000 cans are opened around the world. Every second, ten babies are conceived around the world. Therefore, each time you open a can, you have a 1 in 400 chance of becoming pregnant.
6. What goes up but never comes down?

5 . The letter 'e.'

63 out of 100 statistics are made up on the spot. Including this one.

Scott Adams
Mathematics is not yet capable of coping with the naivete of the mathematician himself.

Abraham Kaplan
Now I feel as if I should succeed in doing something in mathematics, although I cannot see why it is so very important... The knowledge doesn't make life any sweeter or happier, does it?

Helen Keller

The difficulty lies, not in the new ideas, but in escaping the old ones, which ramify, for those brought up as most of us have been, into every corner of our minds.

John Maynard Keynes
Perfect clarity would profit the intellect but damage the will.

Blaise Pascal
Newton's binomium is as beautiful as the Venus de Milo. The problem is that precious few people notice.

Fernando Pessoa
Science is a differential equation. Religion is a boundary condition.

Alan Mathison Turing

Rudi Mathematici

July

Putnam 2002, B1
Alice shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits exactly 50 of her first 100 shots?

A mathematician, an engineer, and a physicist are scheduled to appear at a science and engineering festival. The physicist observed that it behaved like a science and engineering festival, so it must be a science and engineering festival.
The mathematician compared it to a festival he had attended a year before, thereby reducing it to a previously solved problem.
The engineer was looking for a science and engineering festival; therefore, it was a science and engineering festival.
7. Why is it impossible for a human arm to be exactly 12 inches long?
6. Your age.

Statistics are the triumph of the quantitative method, and the quantitative method is the victory of sterility and death.

Hillaire Belloc
When working on a problem, I never think about beauty; I think only of how to solve the problem. But when I have finished, if the solution is not beautiful, I know that it is wrong.

Richard Buckminster Fuller
You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.

Hermann Hesse
I admit that mathematical science is a good thing. But excessive devotion to it is a worse thing.

Aldous Huxley

In mathematical analysis we call x the undetermined part of line a: the rest we don't call y, as we do in common life, but $a-x$. Hence mathematical language has great advantages over the common language.

Georg Christoph Lichtenberg
The outcome of any serious research can only be to make two questions grow where only one grew before.

Thorstein Veblen

	1 T	(1861) Ivar Otto Bendixson (1881) Otto Toeplitz (1955) Bernadette Perrin-Riou	
	W	(1856) Ferdinand Rudio (1902) Mina Spiegel Rees	
	3 T	(1914) Mark Kac	RM115
	4 F	(1805) Sir William Rowan Hamilton (1838) John Venn	RM079
	S	(1802) Niels Henrik Abel (1941) Alexander Keewatin Dewdney	RM055
	S	(1638) Nicolas Malebranche (1741) John Wilson	
31	7 M	(1868) Ladislaus Josephowitsch Bortkiewitz	
	8 T	(1902) Paul Adrien Maurice Dirac (1931) Sir Roger Penrose (1974) Manjul Bhargava	$\begin{aligned} & \hline \text { RM103 } \\ & \text { RM189 } \end{aligned}$
	9 W	(1537) Francesco Barozzi (Franciscus Barocius) (1940) Linda Goldway Keen	
	10 T	(1602) Gilles Personne de Roberval (1926) Carol Ruth Karp	
	11 F	(1730) Charles Bossut (1842) Enrico D'Ovidio	
	12 S	(1882) Jules Antoine Richard (1887) Erwin Rudolf Josef Alexander Schrödinger	RM103
	13 S	(1625) Erasmus Bartholin (1819) George Gabriel Stokes (1861) Cesare Burali-Forti	RM187
32	14 M	(1530) Giovanni Battista Benedetti (1842) Jean Gaston Darboux (1865) Guido Castelnuovo (1866) Charles Gustave Nicolas de La Vallée-Poussin	
	15 T	(1863) Aleksei Nikolaevich Krylov (1892) Louis Pierre Victor Duc de Broglie (1901) Piotr Sergeevich Novikov	RM175
	16 W	(1773) Louis-Benjamin Francoeur (1821) Arthur Cayley	
	17 T	(1601) Pierre de Fermat	RM091
	18 F	(1685) Brook Taylor	
	19 S	(1646) John Flamsteed (1739) Georg Simon Klugel	
	20 S	(1710) Thomas Simpson (1863) Corrado Segre (1882) Wacłav Sierpiński	
$33 \quad 2$	21 M	(1789) Augustin Louis Cauchy	RM127
	22 T	(1647) Denis Papin	
	23 W	(1683) Giovanni Poleni (1829) Moritz Benedikt Cantor (1842) Osborne Reynolds	
	24 T	(1561) Bartholomeo Pitiscus (1942) Karen Keskulla Uhlenbeck	RM163
	25 F	(1561) Philip Van Lansberge (1844) Thomas Muir	RM199
	26 S	(1728) Johann Heinrich Lambert (1875) Giuseppe Vitali (1965) Marcus Peter Francis du Sautoy	
	27 S	(1858) Giuseppe Peano	RM067
34	28 M	(1862) Roberto Marcolongo (1796) Irénée Jules Bienaymé	RM187
	29 T	(1904) Leonard Roth	
	30 W	(1703) Giovanni Ludovico Calandrini (1856) Carle David Tolmé Runge (1906) Olga Taussky-Todd	RM186 RM139
	31 T	(1821) Hermann Ludwig Ferdinand von Helmholtz (1885) Herbert Westren Turnbull	RM211

August

Putnam 2002, B2
Consider a convex polyhedron with at least five faces such that exactly three edges emerge from each of its vertices. Two players play the following game:
Each player, in turn, signs his or her name on a previously unsigned face. The winner is the player who first succeeds in signing three faces that share a common vertex.
Show that the player who signs first will always win by playing as well as possible.

What did 0 say to 8 ?
Nice belt!
A statistician's wife gives birth to twins. Excitedly, he calls everyone to share the good news. When he calls the minister, the minister says, "That's terrific! Bring them down to church this Sunday, and we'll baptize them!"
"Uh, let's just baptize one of them," says the statistician. "We can keep the other one as a control."
8. Only DEAD people can read hexadecimal. How many people can read hexadecimal?
7. Because then it would be a foot.

With the exception of the geometric series, there does not exist in all of mathematics a single infinite series whose sum has been determined rigorously.

Niels Henrik Abel
It is difficult to give an idea of the vast extent of modern mathematics.

Arthur Cayley

The algebraist complains of imperfection, when his language presents an anomaly, when he finds an exception which disturbs the simplicity of his notation, or the symmetrical structure of his syntax, when a formula has to be written with precaution, and a symbolism is not universal.

Sir William Rowan Hamilton
Logic doesn't apply to the real world.
Marvin Lee Minsky
To be sure, mathematics can be extended to any branch of knowledge, including economics, provided the concepts are so clearly defined as to permit accurate symbolic representation. That is only another way of saying that in some branches of discourse it is desirable to know what you are talking about.

James R. Newman
Angling may be said to be so like mathematics that it can never be fully learned.

Izaak Walton

Putnam 2002, B3
Show that, for all integers $n>1$,

Two numbers were having a conversation about their social lives.
28: Did you hear that 284 broke up with 220 ?
6: I'm not surprised. He's far from perfect. But at least their break-up was amicable.
28: Yeah, well, I heard she started seeing 12.
6: Really? He doesn't have abundant charm. Don't you think 10 would be a better match for her?
28: I don't know. He seems so solitary!
9. How do you make 7 even?
8. 51,005 people, because $\mathrm{DEAD}=51,005$ in hexadecimal.

Scientific models are not true, and that makes them useful. They tell simple stories that our minds can grasp. They are lies for children, simplified stories to teach, and there is nothing wrong with it. The progress of science is to tell lies increasingly convincing to increasingly sophisticated children.

Jack Cohen, Terry Pratchett, Ian Stewart

For hundreds of pages the closely-reasoned arguments unroll, axioms and theorems interlock. And what remains with us in the end A general sense that the world can be expressed in closely-reasoned arguments, in interlocking axioms and theorems.

Michael Frayn
Sir, I have found you an argument, but I am not obliged to find you an understanding.

Samuel Johnson
Like the ski resort full of girls hunting for husbands and husbands hunting for girls, the situation is not as symmetrical as it might seem.

Alan Lindsay Mackay
In an examination those who do not wish to know ask questions of those who cannot tell. Sir Walter Alexander Raleigh

Four circles to the kissing come,
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of squares of all four bends Is half the square of their sum.

Frederick Soddy

Rudi Mathematici

October

Putnam 2002, B4
An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with uniform probability. Your objective is to select n in an odd number of guesses. After each incorrect guess, you are informed whether n is higher or lower, and you must guess an integer on your next turn among the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is greater than 2/3.
"Ladies and gentleman, we've lost an engine, but I want to assure you that there's nothing to worry about. We can still make it safely to Spokane with the other three engines. But instead of just 90 minutes, the flight will now take about 3 hours."
A few minutes later, the pilot spoke again. "Folks, it seems that we've lost a second engine. We're still okay, but the trip is now going to take us 6 hours." The statistician shifted uncomfortably in his seat.
A little while later still, the pilot delivered more bad news. "Ladies and gentleman, I'm really sorry to inform you that we've lost a third engine. But I can assure you that we're still safe. However, the trip will now take 12 hours."
Upon hearing this, the statistician became agitated. "Good Lord!" he shouted. "I sure hope we don't lose that fourth engine... or we'll be up here all day!"
10. One is the loneliest number, two's company, and three's a crowd. What is four and five?
9. Take away the 's.'

Any astronomer can predict with absolute accuracy just where every star in the heavens will be at 11:30 tonight. He can make no such prediction about his teenage daughter.
J. T. Adams

From the time of Kepler to that of Newton, and from Newton to Hartley, not only all things in external nature, but the subtlest mysteries of life and organization, and even of the intellect and moral being, were conjured within the magic circle of mathematical formulae.

Samuel Taylor Coleridge
Mathematicians have long since regarded it as demeaning to work on problems related to elementary geometry in two or three dimensions, in spite of the fact that it is precisely this sort of mathematics which is of practical value.

Branko Grünbaum

In real life, I assure you, there is no such thing as algebra. Fran Lebowitz

But this is a degenerate case, where "degenerate", for a mathematician, means "terribly boring".

Neal Stephenson

November

Putnam 2002, B5
A palindrome in base b is a positive integer whose base- b digits read the same backwards and forwards; for example, 2002 is a 4 -digit palindrome in base 10 . Note that 200 is not a palindrome in base 10 , but it is the $3-$ digit palindrome 242 in base 9 , and 404 in base 7 . Prove that there is an integer which is a 3 -digit palindrome in base b for at least 2002 different values of b.

Teacher: What is $14+14$?
Student: 28.
Teacher: That's good!
Student: Good? It's perfect!
Father: Did you learn a lot in math class today?
Son: Apparently not! They want me to come back again tomorrow!

A young boy asked his grandmother for help with his math homework. "I need to find the least common denominator," he told her. "My goodness," his grandmother replied. "I can't believe they still haven't found that. They were looking for that when I was in school!"
11. Why do statisticians hate to shop for clothes?
10. Nine.

Six is a number perfect in itself, and not because God created the world in six days; rather the contrary is true. God created the world in six days because this number is perfect, and it would remain perfect, even if the work of the six days did not exist.

Sant'Agostino

I'm very good at integral and differential calculus, I know the scientific names of beings animalculous; In short, in matters vegetable, animal, and mineral, I am the very model of a modern Major-General.
W.S. Gilbert

Without the concepts, methods and results found and developed by previous generations right down to Greek antiquity one cannot understand either the aims or achievements of mathematics in the last 50 years.

Hermann Klaus Hugo Weyl
The Advantage is that mathematics is a field in which one's blunders tend to show very clearly and can be corrected or erased with a stroke of the pencil. It is a field which has often been compared with chess, but differs from the latter in that it is only one's best moments that count and not one's worst. A single inattention may lose a chess game, whereas a single successful approach to a problem, among many which have been relegated to the wastebasket, will make a mathematician's reputation.

Norbert Wiener

	1	F	(1792) Nikolay Yvanovich Lobachevsky (1847) Christine Ladd-Franklin	RM083
	2	S	(1831) Paul David Gustav du Bois-Reymond (1869) Dimitri Fedorovich Egorov (1901) George Frederick James Temple	RM214
	3	S	(1903) Sidney Goldstein (1924) John Backus	
48	4	M	(1795) Thomas Carlyle	
	5	T	(1868) Arnold Johannes Wilhelm Sommerfeld (1901) Werner Karl Heisenberg (1907) Giuseppe Occhialini	RM155 RM122
	6	W	(1682) Giulio Carlo Fagnano dei Toschi	
	7	T	(1823) Leopold Kronecker (1830) Antonio Luigi Gaudenzio Giuseppe Cremona (1924) Mary Ellen Rudin	RM150
	8	F	(1508) Regnier Gemma Frisius (1865) Jaques Salomon Hadamard (1919) Julia Bowman Robinson	
	9	S	(1883) Nikolai Nikolaievich Luzin (1906) Grace Brewster Murray Hopper (1917) Sergei Vasilovich Fomin	RM214
	10	S	(1804) Karl Gustav Jacob Jacobi (1815) Augusta Ada King Countess Of Lovelace	RM059
49	11	M	(1882) Max Born	RM155
	12	T	(1832) Peter Ludwig Mejdell Sylow (1913) Emma Castelnuovo	RM191
	13	W	(1724) Franz Ulrich Theodosius Aepinus (1887) George Polya	RM131
	14	T	(1546) Tycho Brahe	
	15	F	(1802) János Bolyai (1923) Freeman John Dyson	RM083
	16	S	(1804) Wiktor Yakovievich Bunyakowsky	
	17	S	(1706) Gabrielle Emile Le Tonnelier de Breteuil du Chatelet (1835) Felice Casorati (1842) Marius Sophus Lie (1900) Dame Mary Lucy Cartwright	
50	18	M	(1856) Joseph John Thomson (1917) Roger Lyndon (1942) Lenore Blum	RM161
	19	T	(1783) Charles Julien Brianchon (1854) Marcel Louis Brillouin (1887) Charles Galton Darwin	RM138
	20	W	(1494) Oronce Fine (1648) Tommaso Ceva (1875) Francesco Paolo Cantelli	RM203
	21	T	(1878) Jan Łukasiewicz (1921) Edith Hirsch Luchins (1932) John Robert Ringrose	
	22	F	(1824) Francesco Brioschi (1859) Otto Ludwig Hölder (1877) Tommaso Boggio (1887) Srinivasa Aiyangar Ramanujan	RM150
	23	S	(1872) Georgii Yurii Pfeiffer	
	24	S	(1822) Charles Hermite (1868) Emmanuel Lasker	RM095 RM167
51	25	M	(1642) Isaac Newton (1900) Antoni Zygmund	RM071
	26	T	(1780) Mary Fairfax Greig Somerville (1791) Charles Babbage (1937) John Horton Conway	$\begin{aligned} & \text { RM059 } \\ & \text { RM119 } \\ & \hline \end{aligned}$
	27	W	(1571) Johannes Kepler (1654) Jacob (Jacques) Bernoulli	RM093
	28	T	(1808) Athanase Louis Victoire Duprè (1882) Arthur Stanley Eddington (1903) John von Neumann	RM179 RM107
	29	F	(1856) Thomas Jan Stieltjes	
	30	S	(1897) Stanislaw Saks	
	31	S	(1872) Volodymyr Levitsky (1896) Carl Ludwig Siegel (1945) Leonard Adleman (1952) Vaughan Frederick Randall Jones	RM143

December

Putnam 2002, B6

Let p be a prime number. Prove that the determinant of the matrix

$$
\left(\begin{array}{ccc}
x & y & z \\
x^{p} & y^{p} & z^{p} \\
x^{p^{2}} & y^{p^{2}} & z^{p^{2}}
\end{array}\right)
$$

is congruent modulo p to a product of polynomials of the form $a x+b y+c z$, where a, b, c are integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients are congruent modulo p.)

Heisenberg might have slept here.
Old mathematicians never die; they just lose some of their functions.

Whenever four mathematicians get together, you'll likely find a fifth.
"Take a positive integer n. No, wait, n is too large; take a positive integer k."

12. The math department organizes a raffle in which the prize is announced as an infinite amount of money paid over an infinite amount of time. With the promise of such a prize, the department is able to sell lots of tickets. How could the department offer such a prize and not go broke? 11. Lack of fit.

Standard mathematics has recently been rendered obsolete by the discovery that for years we have been writing the numeral five backward. This has led to reevaluation of counting as a method of getting from one to ten. Students are taught advanced concepts of Boolean algebra, and formerly unsolvable equations are dealt with by threats of reprisals.

Woody Allen
I recognize the lion by his paw. [After reading an anonymous solution to a problem that he realized was Newton's solution.]

Jacob Bernoulli

Do not talk to me of Archimedes' lever. He was an absentminded person with a mathematical imagination. Mathematics commands my respect, but I have no use for engines. Give me the right word and the right accent and I will move the world.

Joseph Conrad
Poetry is as precise as geometry.

Gustave Flaubert

In ancient times they had no statistics so they had to fall back on lies.

Stephen Leacock
To explain all nature is too difficult a task for any one man or even for any one age. 'Tis much better to do a little with certainty, and leave the rest for others that come after you, than to explain all things.

Isaac Newton

